
1.  Introduction
Jezero crater is the landing site for the Mars 2020 Perseverance rover (Farley et al., 2020; Williford et al., 2018). 
The crater was formed in the late-Noachian to mid-Noachian and has undergone significant periods of flu-
vial and lacustrine activity, resulting in the formation of phyllosilicate-bearing and carbonate-bearing rocks, 
as well as its visually striking western delta deposit (Figure 1). It also contains an exposure of the regional 
Nili Fossae olivine-carbonate unit, which has long been of interest to researchers due to its status as the 
largest carbonate-bearing unit identified on Mars' surface (Ehlmann et al., 2008). Previous studies (e.g., 
Edwards & Ehlmann, 2015; Salvatore et al., 2018) have estimated the abundances of carbonate and olivine 
in this regional unit, but not in Jezero at the scale of our study.

Previous studies have identified three carbonate-bearing units in Jezero. Goudge et al. (2015) first identified 
two units: the Light-Toned Floor and the Mottled Terrain, which they determined were likely stratigraph-
ically equivalent. Horgan et  al.  (2020) identified a distinct unit within the Mottled Terrain, which they 
termed the Marginal Carbonates. Here, we discuss the similarities and differences between the Mottled Ter-
rain and Marginal Carbonates and identify a third carbonate-bearing unit intermixed with the olivine-rich 
sands found in Jezero.

In this work, we perform spectral mixture analysis of Mars Reconnaissance Orbiter (MRO) Compact Recon-
naissance Imaging Spectrometer for Mars (CRISM) visible/near-infrared (VNIR) hyperspectral imagery over 
the Jezero deltaic region to estimate abundances of carbonate, olivine, phyllosilicates, and other minerals in 
the region and to constrain the origins of the lithologies and increase our understanding of how the rocks 
have been altered through time. Analysis of CRISM imagery is typically limited to feature identification, 
although recent advances have been made in quantitative unmixing of VNIR hyperspectral imagery using 
radiative transfer theory (e.g., Edwards & Ehlmann, 2015; Lapotre et al., 2017; Liu et al., 2016, 2012; Michal-
ski et al.,  2019) and advanced denoising techniques (Itoh & Parente, 2021). By unmixing single CRISM 
pixels, we can better understand both the composition of geologic units and their spatial extent. Our model 
incorporates several different mineral phases that can help tease out differences in mineral assemblages 
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and subsequent potential formation mechanisms. In particular, the use of three carbonate endmembers—
calcite, magnesite, and siderite—has resulted in the identification of three carbonate-rich units in Jezero.

2.  Data and Methods
We present an analysis of three VNIR hyperspectral image cubes acquired by CRISM (Murchie et al., 2007). 
Our model uses the calibrated TRR3 L detector data between 1.0 and 2.5 μm. Dust and ice opacities for each 
image vary based on the atmospheric conditions at the time the image was acquired and are closely related 
to unmixing model uncertainty in that increased atmospheric dust and ice can obscure other mineral sig-
natures and alter modeled abundances (Zastrow & Glotch, 2018). Opacity values and image resolutions are 
provided in Table S1. Due to the overlap of the CRISM images, abundance maps presented in this paper will 
show the images in the following order (from north to south): FRT000047A3, HRL000040FF, FRT00005C5E.

In this study, CRISM data processing and analysis are essentially a two-step process: (1) atmospheric cor-
rection and calculation of surface single scattering albedo (SSA) using a radiative transfer model and (2) 
spectral mixture analysis of surface single scattering albedo using a linear least squares model.

2.1.  Atmospheric Correction

To quantitatively correct for the atmospheric contribution to CRISM I/F data (the radiance detected by the 
instrument divided by the solar irradiance divided by π), we use a radiative transfer model developed at 
Washington University in St. Louis and described by Liu et al. (2016). A detailed description is provided in 
the supplementary material (Text S1).

2.2.  Nonnegative Linear Least Squares Unmixing Model

For a library of minerals, optical constants are used to build a spectral library of SSAs at various grain sizes. 
These mineral SSAs are used as endmembers and combined linearly to model the surface SSAs output from 
DISORT. The model used in this work is the nonnegative linear least squares unmixing model (NNLS, Law-
son & Hanson, 1995; Rogers & Aharonson, 2008), which has been used to unmix CRISM hyperspectral im-
ages by Liu et al. (2012, 2016) and Michalski et al. (2019). In this model, the least squares fit is constrained 
to include only positive abundances, as negative mineral abundances have no physical meaning.

ZASTROW AND GLOTCH

10.1029/2020GL092365

2 of 10

Figure 1.  Summary of imagery and study area in this work. Yellow polygons outline the three CRISM images 
analyzed: FRT000047A3, FRT00005C5E, and HRL00040FF. Base image is a Context Imager (CTX) mosaic. CRISM, 
Compact Reconnaissance Imaging Spectrometer for Mars.
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2.2.1.  Spectral Library

The mineral library used in the Jezero model consists of five phyllosilicates (Mg-serpentine, montmoril-
lonite, nontronite, saponite, and talc), three carbonates (calcite, magnesite, and siderite), four olivines (Fo0, 
Fo40, Fo70, and Fo100), two feldspars (anorthite and labradorite), four pyroxenes (diopside, enstatite (two 
samples), and augite), opal, ferrihydrite, and modeled Martian dust (Wolff et al., 2009). No sulfates were 
used in this model. Various grain sizes (Table S2) were chosen for each mineral group based on intensive 
testing which led to the combinations with the lowest root-mean-squared errors (RMS). We note here that 
out of necessity we use mineral endmembers of distinct compositions, while it is possible that the model 
represents mineral solid solutions with different mixing proportions of these endmembers (e.g., magnesite 
and calcite modeled together may actually represent a mixed cation carbonate).

3.  Modeling Results
For each CRISM image, we ran a series of models with various combinations of endmember minerals and 
compared their RMS errors and modeled spectra to determine the set of endmembers that best fit the meas-
ured CRISM spectra. The best-fit models are presented here. In addition to these “baseline” models, we also 
include below some discussion of the models in which the Fe-carbonate endmember was removed, as it 
particularly impacts the modeled olivine distribution as compared to previous works. Additional details on 
the spectral library and model selection are provided in the supplementary material (Text S2).

The three modeled images show good agreement in overlapping areas, particularly north of the crater's inlet 
channel (where the majority of our analysis is focused). Olivine is slightly higher in HRL000040FF than 
the other two images, but the other groups have very similar values. We use the error associated with the 
dust and ice opacities to determine model error, which is largely driven by the atmospheric conditions at 
the time of image acquisition. This error varies by mineral group, as shown in Figure S4. The phyllosilicate 
and dust endmembers present the largest variation in modeled abundances between the lower and upper 
opacity bounds and thus their reported values have the highest uncertainty. The carbonate, opal, and olivine 
groups have the lowest uncertainty.

For each image, the unmixing model produces cumulative abundance values for all three endmember car-
bonates up to ∼35% per pixel. The high-carbonate pixels (roughly ranging from 25% to 35%) are preferen-
tially located in the Marginal Carbonates unit of Horgan et al. (2020), as shown in Figure 2a. There are also 
elevated carbonate abundances located along the edges of the delta. The Mottled Terrain contains lower, but 
still nonzero, modeled carbonate abundances.
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Figure 2.  Cumulative abundance maps for (a) carbonate and (b) olivine. Outlines of the northern fan, Mottled Terrain, 
and the Light-Toned Floor are from Goudge et al. (2015); the Marginal Carbonates are outlined based on Horgan et al. 
(2020).
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Cumulative olivine abundance values in some regions reach up to ∼40% per pixel. The highest olivine abun-
dances are found inside the crater, predominately covering the Light-Toned Floor to the south and east of 
the delta. The maps also indicate elevated olivine abundances along the inner-rim of the crater, as shown 
in Figure 2b.

Cumulative modeled phyllosilicate abundances reach up to ∼80% per pixel in some areas (Figure 2c). The 
highest abundances fall largely along the inner-rim of the crater (the same area as the elevated olivine abun-
dances noted above), in the Mottled Terrain, and on the crater floor. As discussed in Section 4.3, we believe 
these abundances to be unrealistically high.

Feldspars (largely modeled as anorthite, up to ∼40%) and pyroxenes (augite and diopside, up to ∼15–20%) 
are also present in higher modeled abundances on the crater floor than elsewhere. The single opal endmem-
ber has modeled abundances up to ∼15–20%, covering the Mottled Terrain and the Light-Toned Floor unit. 
Modeled dust abundances do not appear to be correlated with any specific landforms, and the model does 
not use ferrihydrite at all.

We completed further analysis of the high-carbonate and high-olivine regions by isolating the pixels that 
contain abundances at and above the 90th percentile of the distribution for each mineral group. These 
masks and group distributions are shown in Figure 3. Abundance distributions for the specific minerals in 
each group are found in Figure S5.

The spatial distributions in Figure  3 show that the regions of high carbonate and olivine are inversely 
correlated. In terms of carbonate mineral distributions, the high-carbonate regions are comprised mainly 
of magnesite and siderite and the high-olivine regions are higher in calcite. Figure 4 shows the abundance 
maps for the three carbonates used in the model. Siderite is dominant and prevalent throughout the Mar-
ginal Carbonates and the Mottled Terrain. Magnesite is largely restricted to the Marginal Carbonates, which 
are outlined in the figure, although it is not altogether missing from the Mottled Terrain. Calcite appears in 
much lower abundances but is spread relatively evenly throughout the region, although it does appear to be 
anticorrelated with siderite.

Finally, we mapped a region of interest (Figure 5a, 5b, and S6) that covers adjacent carbonate-enriched 
and olivine-enriched areas along the upper margin of the crater, as well as the potential contact between 
the Marginal Carbonates and the Mottled Terrain. Before mapping, the CRISM images were georegistered 
to the Murray Lab HiRISE mosaic. Units were mapped on the HiRISE image by CRISM pixel, i.e., each 
CRISM pixel was assigned to a unit based on the entire area covered by the pixel. We used HRL000040FF 
for this mapping because its RMS error is lower than the other image that overlaps this region. Each pixel 
was mapped as majority light-toned, majority sand, or a mixture of light-toned and sand. The majority light-
toned units were then split into the Marginal Carbonates and the Mottled Terrain by following the dashed 
line in Figure 5a. In the ROI, there are two other features that do not fall into any of these three categories. 
These areas have been masked out for the analysis. The mapping, mineral distributions, and statistical anal-
ysis are detailed in Figures S6 and S7 and summarized below.

Carbonate abundance is highest in the two light-toned units and olivine abundance is highest in the sand 
unit and Mottled Terrain. Phyllosilicate abundance is equally high in both light-toned units; however, the 
specific phyllosilicate mineral distributions show differences in spatial distribution. Talc is distributed 
throughout all three units; montmorillonite and nontronite are found least in the sand unit, and most in the 
Marginal Carbonates and Mottled Terrain, respectively; serpentine is found most in the sand unit, less in 
the Mottled Terrain, and not at all in the Marginal Carbonates; and saponite is not found in any of the units. 
Opal is found in similar abundances in the two light-toned units and slightly more in the sand unit. In terms 
of carbonate phase, magnesite is found solely in the Marginal Carbonates, siderite is found in all three units, 
and calcite is found in the Mottled Terrain and sand units.

4.  Discussion
4.1.  The Nature of Olivine Deposits in Jezero

Based on our analysis, the olivine detected by CRISM in Jezero crater appears to be predominantly con-
tained in the sand covering the terrain. These olivine-rich sands likely are the result of preferential physical 
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weathering of the host rock: in this case, the Light-Toned Floor, consistent with Goudge et  al.  (2015). 
Visual examination of HiRISE images over the other high-olivine areas shows they are almost exclusively 
sand-dominated, particularly the deposits on the crater floor to the south and east of the delta. Examples 
of these areas are in Figure S7. Olivine is also present in the Mottled Terrain, but at abundances levels ∼4x 
less than in the sands.

Curiously, the dominant olivine endmember used by the baseline NNLS model is Fo0, with only Fo70 show-
ing any other significant spatially resolved appearance (Figure S8). This is somewhat contrary to previous 
analyses of data from the Thermal Emission Spectrometer (TES, Koeppen & Hamilton, 2008) that have indi-
cated that the olivine in this region is more Mg-rich (∼Fo50–75) than our baseline model indicates. In addition, 
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Figure 3.  (a) Carbonate and (b) olivine abundances at their respective 90th percentiles and above. (c and d) Mean 
measured and modeled spectra for 90th percentile pixels. Mean spectra from all three CRISM images have been 
averaged together to produce a single spectrum. The dashed line on (d) from ∼1.9 to 2.1 µm represents residual 
atmosphere not removed by the DISORT model. A full explanation is in the supplementary material. (e) Distribution 
of abundances for all groups for both the high-carbonate and high-olivine regions. All distribution plots in this paper 
are standard box and whisker plots. A more detailed explanation is in the supplementary material. CRISM, Compact 
Reconnaissance Imaging Spectrometer for Mars.
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the Marginal Carbonates have long been considered to be olivine-rich (e.g., Brown et al., 2020; Ehlmann 
et al., 2008; Goudge et al., 2015; Kremer et al., 2019; Mandon et al., 2020), which our model also somewhat 
disputes. These studies show no real distinction between the carbonate-bearing and olivine-bearing units 
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Figure 4.  (a) Calcite, (b) magnesite, and (c) siderite abundance maps. The Marginal Carbonates are outlined again in (b).

Figure 5.  (a) Close-up of ROI. (b) Zoom to highlight contact between Marginal Carbonates and Mottled Terrain. (c–e) Abundance maps of the three main 
carbonate units, context boxes in Figure 1. (c) Marginal Carbonates with magnesite abundances overlain, (d) olivine-rich sand with calcite abundances overlain, 
and (e) Mottled Terrain with siderite abundances overlain. Base image is the Murray Lab HiRISE mosaic E77-25_N18-5.tif.
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as our preferred baseline model does. One of the findings of Brown et al. (2020) was a large grain size, Fo44–
Fo66 olivine composition. It is possible that, having reached the upper limits of grain size (1,000 µm) with 
olivine in our model, the model has compensated by using a more Fe-rich olivine.

To further test our model's preference for siderite over magnesite, calcite, and the more Mg-rich olivine 
endmembers, we included a model run with the Fe-carbonate endmember removed. This model results 
in higher abundances of more Mg-rich olivine in the Marginal Carbonates. Maps showing the change in 
abundance for Fo40 and Fo70 in HRL000040FF are in Figure S3a.

In terms of quality of spectral fit, however, the inclusion of siderite is clearly preferred by our model. 
The RMS error is smaller for the baseline model and the spectra match more closely, particularly around 
∼2.3 µm, where siderite has an absorption band. Modeled spectra from both models of the high-carbonate 
region, as identified in Figure 3, are shown in Figure S3b. Horgan et al. (2020) noted that the spectral shape 
in the Marginal Carbonates was probably due to Fe-substitution in carbonate as opposed to Fe-substitution 
in other minerals. Our model appears to corroborate that suggestion.

Taking into account both our model results and those of past analyses (e.g., Goudge et al., 2015; Horgan 
et al., 2020), we consider it likely that the unit's composition is somewhere in between our two best-fit mod-
els with a mixture of olivine and more Fe-bearing Mg-carbonate in the Marginal Carbonates.

4.2.  Carbonate Variability

Horgan et al. (2020) noted that the spectra in the Marginal Carbonates differed from those in the Mottled 
Terrain in both relative strength and the ratio of the carbonate absorptions at 2.3  and 2.5 μm. This differ-
ence is mostly likely due to differences in formation processes and environment. Their preferred method 
for the Marginal Carbonate's formation is a combination of fluvial activity and precipitation in a near-shore 
lacustrine environment.

Our model supports the hypothesis that there is a difference between the carbonates identified in the Mar-
ginal Carbonates and in the Mottled Terrain based on changing carbonate mineralogy in the two areas. To 
summarize the results shown above, siderite is present in both the Marginal Carbonates and the Mottled 
Terrain, magnesite is almost entirely found in the Marginal Carbonates, and calcite is more associated with 
the sandy regions (greater Fo0 abundance) than either of the more-lithified terrains.

From this analysis, there appear to be three distinct carbonate-bearing units across the study region. The 
most prominent unit is the Marginal Carbonates, made up of siderite and magnesite (Figure 5c). The second 
carbonate-bearing unit includes calcite associated with the olivine-rich sands largely found around the Mot-
tled Terrain (Figure 5d). The third unit is the Mottled Terrain with siderite in the more-lithified landforms 
(Figure 5e).

4.3.  Uncertainty in Phyllosilicate Modeling

The distribution of phyllosilicate minerals, as well as the selection of particular minerals, is cause for some 
concern in analyzing our modeling results. In regions such as the crater floor and the high-olivine units, 
where the spectra from 2.1 to 2.5 µm are generally flat, the phyllosilicate values tend to be quite high. A 
possible explanation for this is that the model is trying to use the phyllosilicate spectra (which have sharp 
features) to model the noise in the spectra instead of the flat “features”. In terms of phyllosilicate mineral 
selection, it is confusing that the model has chosen an Al-smectite (montmorillonite) over the previously 
identified Fe/Mg-smectites (saponite). However, the uncertainty in the phyllosilicate abundances does not 
appear to greatly affect the other mineral groups. We ran a series of models removing each of the phyllo-
silicate minerals and opal and compared them to the base model. Overall, when the phyllosilicates were 
removed, the only phase that was largely affected (i.e., by more than a couple of percent) was dust, which 
increased greatly when endmembers were removed. Figure S9 shows these results.
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4.4.  Implications for Carbonate Formation and Jezero History

Our analysis identifies three carbonate assemblages in Jezero crater, indicating that there were likely at least 
three potential periods of carbonate formation. Below, we outline and discuss these periods and hypothesize 
a potential formation sequence.

4.4.1.  Olivine Deposition and Calcite Formation

A number of hypotheses for the formation of the olivine-rich unit in Jezero and the wider Nili Fossae region 
have been suggested. The hypothesis that the olivine was deposited as volcanic ash has been supported 
by a number of researchers (e.g., Kremer et al., 2019; Mandon et al., 2020; Rogers et al., 2018). Horgan 
et al. (2020) noted a potential terrestrial analogue in the Igwisi Hills lavas and tuffs that contain primary 
olivine, secondary calcite, and a serpentine-like mineral (Willcox et al., 2015). The ash hypothesis is sup-
ported by the presence of calcite mixed with the olivine-rich sands here in Jezero as identified by our model.

Initial partial serpentinization and formation of calcite in the olivine-bearing unit may have occurred rap-
idly after emplacement due to contact between the hot ash and the water-rich layer beneath it (e.g., Brown 
et al., 2010; Ehlmann et al., 2008; Viviano et al., 2013). Mandon et al. (2020) questioned this hypothesis 
due to the presence of carbonate across many tens of meters of elevation in the same unit, whereas contact 
metamorphism would only occur in the first meters of the unit. However, it is not necessary that all of the 
carbonate in Jezero formed directly after the ash was emplaced.

4.4.2.  Initial Fe-Rich Carbonate Formation

We hypothesize that at some point after the ash emplacement and partial serpentinization (or perhaps con-
currently, as suggested by Brown et al. (2010)), partial carbonation of serpentine occurred. The preference 
of our model for more Fe-rich olivine is consistent with a resulting carbonate that is also more Fe-rich. 
Given the sharp decrease of olivine in the Mottled Terrain as compared to the sand unit, perhaps serpen-
tinization occurred more fully at the top of the unit (as suggested by van Berk and Fu (2011)), leaving the 
olivine-rich ash, calcite, and serpentine that we see most strongly in the sand unit to later be broken down 
by physical weathering.

4.4.3.  Marginal Carbonate Formation

Given the modeled occurrence of siderite in both the Mottled Terrain and the Marginal Carbonates, it is 
possible that both units underwent the same emplacement and initial alteration to serpentine and Fe-rich 
carbonate. Thus, the production of more Mg-rich carbonate now present in the Marginal Carbonates must 
have occurred at some time after the initial alteration. Horgan et al.  (2020) hypothesized that these car-
bonates formed as a combination of fluvial and beach deposits in a different environment than the Mottled 
Terrain. The change in carbonate phase from Fe-rich to Mg-rich that our model has detected is a potential 
indicator of formation in different environments; thus, we agree that the formation of Mg-carbonate as a 
lake-side precipitate is possible. The lack of olivine and serpentine in the Marginal Carbonates does indicate 
that additional serpentinization and carbonation occurred here as well.

5.  Conclusions
Our analysis has identified three carbonate-bearing units with different carbonate phase representations: 
(1) the Marginal Carbonates with high Mg-rich and Fe-rich carbonate and a lack of olivine and serpentine; 
(2) the Mottled Terrain with Fe-rich carbonate and less significant amounts of olivine of serpentine; and 
(3) the olivine-rich sands enriched in finely particulate calcite and serpentine. Total carbonate abundances 
across the study area reach up to 35% per pixel. The Marginal Carbonates have the highest overall carbonate 
abundance with 50% of the abundances falling between ∼15% and 20% abundance, followed by the Mottled 
Terrain with 50% of the abundances falling between ∼10% and 15%, and lastly by the olivine-rich sands with 
50% of the abundances falling between 5% and 8%. The error analysis presented in Figure S4 confirms that 
these abundances are likely detectable by our model.

The diversity of carbonate phases present in Jezero points to multiple periods of carbonate formation under 
different circumstances. We posit that (1) olivine-rich ash was deposited across Jezero, partially serpenti-
nized and altered to form calcite, (2) subsequently altered to an Fe-rich carbonate, and (3) in the case of 
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the Marginal Carbonates, underwent another period of alteration to or were precipitated as a more Mg-rich 
carbonate. In-situ analysis and sample collection by the Mars 2020 rover will be crucial to understanding 
the full extent of carbonate formation in Jezero crater.

Data Availability Statement
Original CRISM data sets are from the Planetary Data System's Geosciences Node (https://pds-geoscienc-
es.wustl.edu/). Processed and modeled data may be found in Zastrow and Glotch (2020) (https://doi.
org/10.5281/zenodo.4699583). CTX and HiRISE mosaics are from The Murray Lab at the California Insti-
tute of Technology (http://murray-lab.caltech.edu/Mars2020/index.html).
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